Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Molecules ; 27(17)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2023949

ABSTRACT

In this paper, we report on the preparation of Imidazole-functionalized glass surfaces, demonstrating the ability of a dinuclear Cu(II) complex of a macrocyclic ligand to give a "cascade" interaction with the deprotonated forms of grafted imidazole moieties. In this way, we realized a prototypal example of an antimicrobial surface based on a supramolecular approach, obtaining a neat microbicidal effect using low amounts of the described copper complex.


Subject(s)
Anti-Bacterial Agents , Copper , Anti-Bacterial Agents/pharmacology , Glass , Imidazoles/pharmacology , Ligands
2.
Neuroscience ; 498: 155-173, 2022 08 21.
Article in English | MEDLINE | ID: covidwho-1983733

ABSTRACT

Here, neuromodulatory effects of selective angiotensin-converting enzyme 2 (ACE2) inhibitors were investigated. Two different types of small molecule ligands for ACE2 inhibition were selected using chemical genetic approach, they were synthesized using developed chemical method and tested using presynaptic rat brain nerve terminals (synaptosomes). EBC-36032 (1 µM) increased in a dose-dependent manner spontaneous and stimulated ROS generation in nerve terminals that was of non-mitochondrial origin. Another inhibitor EBC-36033 (MLN-4760) was inert regarding modulation of ROS generation. EBC-36032 and EBC-36033 (100 µM) did not modulate the exocytotic release of L-[14C]glutamate, whereas both inhibitors decreased the initial rate of uptake, but not accumulation (10 min) of L-[14C]glutamate by nerve terminals. EBC-36032 (100 µM) decreased the exocytotic release as well as the initial rate and accumulation of [3H]GABA by nerve terminals. EBC-36032 and EBC-36033 did not change the extracellular levels and transporter-mediated release of [3H]GABA and L-[14C]glutamate, and tonic leakage of [3H]GABA from nerve terminals. Therefore, synthesized selective ACE2 inhibitors decreased uptake of glutamate and GABA as well as exocytosis of GABA at the presynaptic level. The initial rate of glutamate uptake was the only parameter that was mitigated by both ACE2 inhibitors despite stereochemistry issues. In terms of ACE2-targeted antiviral/anti-SARS-CoV-2 and other therapies, novel ACE2 inhibitors should be checked on the subject of possible renin-angiotensin system (RAS)-independent neurological side effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Neurotransmitter Agents , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Glutamic Acid , Imidazoles/pharmacology , Leucine/analogs & derivatives , Leucine/pharmacology , Neurotransmitter Agents/pharmacology , Presynaptic Terminals , Rats , Rats, Wistar , Reactive Oxygen Species , Synaptosomes , gamma-Aminobutyric Acid , COVID-19 Drug Treatment
3.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-1821532

ABSTRACT

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Imidazoles , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Imidazoles/pharmacology , Mice , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , United States , United States Food and Drug Administration
4.
Molecules ; 26(24)2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1572567

ABSTRACT

COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus-host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.


Subject(s)
COVID-19 Drug Treatment , Cell Death/drug effects , Drug Discovery/methods , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , Amino Acid Chloromethyl Ketones/pharmacology , Antiviral Agents/pharmacology , Apoptosis/drug effects , Furans/pharmacology , Humans , Hydroxychloroquine/pharmacology , Imidazoles/pharmacology , Indenes/pharmacology , Indoles/pharmacology , Necroptosis/drug effects , Phytochemicals/pharmacology , Pyroptosis/drug effects , SARS-CoV-2/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Viral Proteins/antagonists & inhibitors
5.
Sci Rep ; 11(1): 23670, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1560986

ABSTRACT

Among cases of SARS-CoV-2 infections that result in serious conditions or death, many have pre-existing conditions such as hypertension and are on renin-angiotensin-aldosterone system (RAAS) inhibitors. The angiotensin-converting-enzyme-2 (ACE2), a key protein of the RAAS pathway, also mediates cellular entry of SARS-CoV-2. RAAS inhibitors might affect the expression levels of ace2, which could impact patient susceptibility to SARS-CoV-2. However, multi-organ-specific information is currently lacking and no species other than rodents have been examined. To address this knowledge gap, we treated adult zebrafish with the RAAS inhibitors aliskiren, olmesartan, and captopril for 7 consecutive days and performed qRT-PCR analysis of major RAAS pathway genes in the brain, gill, heart, intestine, kidney, and liver. Both olmesartan and captopril significantly increased ace2 expression in the heart, gill, and kidney. Olmesartan also increased ace2 expression in the intestine. Conversely, aliskiren significantly decreased ace2 expression in the heart. Discontinuation of compound treatments for 7 days did not return ace2 expression to baseline levels. While potential risks or benefits of antihypertensive RAAS inhibitors to SARS-CoV-2 infections in humans remain uncertain, this study provides new insights regarding the impact of RAAS inhibitors on organ-specific ace2 expression in another vertebrate model, thereby providing comparative data and laying scientific groundwork for future clinical decisions of RAAS inhibitor use in the context of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Down-Regulation/drug effects , Up-Regulation/drug effects , Zebrafish/metabolism , Amides/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Animals , Brain/drug effects , Brain/metabolism , COVID-19/pathology , COVID-19/virology , Fumarates/pharmacology , Gills/drug effects , Gills/metabolism , Humans , Imidazoles/pharmacology , Liver/drug effects , Liver/metabolism , Models, Animal , SARS-CoV-2/isolation & purification , Tetrazoles/pharmacology
6.
Sci Rep ; 11(1): 23315, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550334

ABSTRACT

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/metabolism , Drug Development/methods , Drug Repositioning/methods , Benzamides/pharmacology , Cell Line , Computer Simulation , Coronavirus/chemistry , Databases, Pharmaceutical , Drug Discovery/methods , Host-Pathogen Interactions , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Triazines/pharmacology , COVID-19 Drug Treatment
7.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1493337

ABSTRACT

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19/immunology , Dendritic Cells/immunology , Immunity, Cellular/drug effects , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Female , Humans , Imidazoles/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Male , Middle Aged , Toll-Like Receptors/immunology
8.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1480791

ABSTRACT

Novel xanthine and imidazolone derivatives were synthesized based on oxazolone derivatives 2a-c as a key intermediate. The corresponding xanthine 3-5 and imidazolone derivatives 6-13 were obtained via reaction of oxazolone derivative 2a-c with 5,6-diaminouracils 1a-e under various conditions. Xanthine compounds 3-5 were obtained by cyclocondensation of 5,6-diaminouracils 1a-c with different oxazolones in glacial acetic acid. Moreover, 5,6-diaminouracils 1a-e were reacted with oxazolones 2a-c in presence of drops of acetic acid under fused condition yielding the imidazolone derivatives 6-13. Furthermore, Schiff base of compounds 14-16 were obtained by condensing 5,6-diaminouracils 1a,b,e with 4-dimethylaminobenzaldehyde in acetic acid. The structural identity of the resulting compounds was resolved by IR, 1H-, 13C-NMR and Mass spectral analyses. The novel synthesized compounds were screened for their antifungal and antibacterial activities. Compounds 3, 6, 13 and 16 displayed the highest activity against Escherichia coli as revealed from the IC50 values (1.8-1.9 µg/mL). The compound 16 displayed a significant antifungal activity against Candia albicans (0.82 µg/mL), Aspergillus flavus (1.2 µg/mL) comparing to authentic antibiotics. From the TEM microgram, the compounds 3, 12, 13 and 16 exhibited a strong deformation to the cellular entities, by interfering with the cell membrane components, causing cytosol leakage, cellular shrinkage and irregularity to the cell shape. In addition, docking study for the most promising antimicrobial tested compounds depicted high binding affinity against acyl carrier protein domain from a fungal type I polyketide synthase (ACP), and Baumannii penicillin- binding protein (PBP). Moreover, compound 12 showed high drug- likeness, and excellent pharmacokinetics, which needs to be in focus for further antimicrobial drug development. The most promising antimicrobial compounds underwent theoretical investigation using DFT calculation.


Subject(s)
Anti-Infective Agents/chemical synthesis , Imidazoles/chemistry , Uracil/chemistry , Xanthines/chemistry , Animals , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Binding Sites , Candida albicans/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Density Functional Theory , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Half-Life , Imidazoles/metabolism , Imidazoles/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Polyketide Synthases/chemistry , Polyketide Synthases/metabolism , Structure-Activity Relationship , Thermodynamics , Vero Cells
9.
Cell Res ; 31(12): 1230-1243, 2021 12.
Article in English | MEDLINE | ID: covidwho-1475291

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the ongoing global pandemic that poses substantial challenges to public health worldwide. A subset of COVID-19 patients experience systemic inflammatory response, known as cytokine storm, which may lead to death. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important mediator of inflammation and cell death. Here, we examined the interaction of RIPK1-mediated innate immunity with SARS-CoV-2 infection. We found evidence of RIPK1 activation in human COVID-19 lung pathological samples, and cultured human lung organoids and ACE2 transgenic mice infected by SARS-CoV-2. Inhibition of RIPK1 using multiple small-molecule inhibitors reduced the viral load of SARS-CoV-2 in human lung organoids. Furthermore, therapeutic dosing of the RIPK1 inhibitor Nec-1s reduced mortality and lung viral load, and blocked the CNS manifestation of SARS-CoV-2 in ACE2 transgenic mice. Mechanistically, we found that the RNA-dependent RNA polymerase of SARS-CoV-2, NSP12, a highly conserved central component of coronaviral replication and transcription machinery, promoted the activation of RIPK1. Furthermore, NSP12 323L variant, encoded by the SARS-CoV-2 C14408T variant first detected in Lombardy, Italy, that carries a Pro323Leu amino acid substitution in NSP12, showed increased ability to activate RIPK1. Inhibition of RIPK1 downregulated the transcriptional induction of proinflammatory cytokines and host factors including ACE2 and EGFR that promote viral entry into cells. Our results suggest that SARS-CoV-2 may have an unexpected and unusual ability to hijack the RIPK1-mediated host defense response to promote its own propagation and that inhibition of RIPK1 may provide a therapeutic option for the treatment of COVID-19.


Subject(s)
COVID-19/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/mortality , COVID-19/virology , Coronavirus RNA-Dependent RNA Polymerase/genetics , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cytokines/genetics , Cytokines/metabolism , Down-Regulation/drug effects , ErbB Receptors/metabolism , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Survival Rate , Transcriptome/drug effects , Viral Load/drug effects , Virus Internalization , COVID-19 Drug Treatment
10.
J Phys Chem Lett ; 12(20): 4814-4822, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1387121

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) plays a key role in renin-angiotensin system regulation and amino acid homeostasis. Human ACE2 acts as the receptor for severe acute respiratory syndrome coronaviruses SARS-CoV and SARS-CoV-2. ACE2 is also widely expressed in epithelial cells of the lungs, heart, kidney, and pancreas. It is considered an important drug target for treating SARS-CoV-2 as well as pulmonary diseases, heart failure, hypertension, renal diseases, and diabetes. Despite the critical importance, the mechanism of ligand binding to the human ACE2 receptor remains unknown. Here, we have addressed this challenge through all-atom simulations using a novel ligand Gaussian accelerated molecular dynamics (LiGaMD) method. Microsecond time scale LiGaMD simulations have unprecedentedly captured multiple times of spontaneous binding and unbinding of a potent inhibitor MLN-4760 in the ACE2 receptor. With ligand far away in the unbound state, the ACE2 receptor samples distinct Open, Partially Open, Closed, and Fully Closed conformations. Upon ligand binding to the active site, conformational ensemble of the ACE2 receptor is biased toward the Closed state as observed in the X-ray experimental structure. The LiGaMD simulations thus suggest a conformational selection mechanism for ligand recognition by the highly flexible ACE2 receptor, which is expected to facilitate rational drug design targeting human ACE2 against coronaviruses and other related human diseases.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Imidazoles/chemistry , Leucine/analogs & derivatives , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Catalytic Domain , Drug Design , Humans , Imidazoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Ligands , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation , SARS-CoV-2/metabolism
11.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Article in English | MEDLINE | ID: covidwho-1355289

ABSTRACT

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/metabolism , Host-Pathogen Interactions/physiology , Animals , Azetidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , Janus Kinase 1/metabolism , Lipopolysaccharides/toxicity , Machine Learning , Male , Mice , Mice, Inbred C57BL , Neutrophils/virology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyridazines/pharmacology , RAW 264.7 Cells , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology
12.
Mol Syst Biol ; 17(8): e10239, 2021 08.
Article in English | MEDLINE | ID: covidwho-1335457

ABSTRACT

Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Evaluation, Preclinical/methods , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Drug Repositioning , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Imidazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Salmeterol Xinafoate/pharmacology , Vero Cells
13.
Biomed Res Int ; 2021: 6614000, 2021.
Article in English | MEDLINE | ID: covidwho-1327769

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have shown the ability to inhibit in vitro viral replications of coronaviridae viruses such as SARS-CoV and SARS-CoV-2. However, clinical trial outcomes have been disparate, suggesting that CQ and HCQ antiviral mechanisms are not fully understood. Based on three-dimensional structural similarities between HCQ and the known ACE2 specific inhibitor MLN-4760, we compared their modulation on ACE2 activity. Here we describe, for the first time, in a cell-free in vitro system that HCQ directly and dose-dependently inhibits the activity of recombinant human ACE2, with a potency similar to the MLN-4760. Further analysis suggests that HCQ binds to a noncompetitive site other than the one occupied by MLN-4760. We also determined that the viral spike glycoprotein segment that comprises the RBD segment has no effect on ACE2 activity but unexpectedly was able to partially reverse the inhibition induced by HCQ but not that by MLN-4760. In summary, here we demonstrate the direct inhibitory action of HCQ over the activity of the enzyme ACE2. Then, by determining the activity of ACE2, we reveal that the interaction with the spike protein of SARS-CoV-2 leads to structural changes that at least partially displace the interaction of the said enzyme with HCQ. These results may help to explain why the effectiveness of HCQ in clinical trials has been so variable. Additionally, this knowledge could be used for to develop techniques for the detection of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Hydroxychloroquine , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/metabolism , Hydroxychloroquine/pharmacology , Imidazoles/chemistry , Imidazoles/metabolism , Imidazoles/pharmacology , Leucine/analogs & derivatives , Leucine/chemistry , Leucine/metabolism , Leucine/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
14.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: covidwho-1305742

ABSTRACT

Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.


Subject(s)
Antimalarials/pharmacology , Drug Discovery/trends , Malaria/drug therapy , Plasmodium/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Calcium/metabolism , Casein Kinase I/metabolism , Culicidae , Drug Design , Drug Resistance , Glycogen Synthase Kinase 3/metabolism , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , MAP Kinase Signaling System , Phosphotransferases/chemistry , Plasmodium/enzymology , Pyridines/pharmacology
15.
Proteins ; 89(11): 1425-1441, 2021 11.
Article in English | MEDLINE | ID: covidwho-1281247

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment. An important target is the main protease (Mpro ), which plays a major role in replication of the virus. In this study, Gaussian and residue network models are employed to reveal two distinct potential allosteric sites on Mpro that can be evaluated as drug targets besides the active site. Then, Food and Drug Administration (FDA)-approved drugs are docked to three distinct sites with flexible docking using AutoDock Vina to identify potential drug candidates. Fourteen best molecule hits for the active site of Mpro are determined. Six of these also exhibit high docking scores for the potential allosteric regions. Full-atom molecular dynamics simulations with MM-GBSA method indicate that compounds docked to active and potential allosteric sites form stable interactions with high binding free energy (∆Gbind ) values. ∆Gbind values reach -52.06 kcal/mol for the active site, -51.08 kcal/mol for the potential allosteric site 1, and - 42.93 kcal/mol for the potential allosteric site 2. Energy decomposition calculations per residue elucidate key binding residues stabilizing the ligands that can further serve to design pharmacophores. This systematic and efficient computational analysis successfully determines ivermectine, diosmin, and selinexor currently subjected to clinical trials, and further proposes bromocriptine, elbasvir as Mpro inhibitor candidates to be evaluated against SARS-CoV-2 infections.


Subject(s)
Antiviral Agents/metabolism , Benzofurans/chemistry , Coronavirus 3C Proteases/metabolism , Drug Repositioning/methods , Imidazoles/chemistry , Allosteric Site , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzofurans/metabolism , Benzofurans/pharmacology , Binding Sites , Bromocriptine/chemistry , Bromocriptine/metabolism , Bromocriptine/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Diosmin/chemistry , Diosmin/metabolism , Hydrazines/chemistry , Hydrazines/metabolism , Hydrazines/pharmacology , Imidazoles/metabolism , Imidazoles/pharmacology , Ivermectin/chemistry , Ivermectin/metabolism , Ivermectin/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology , United States , United States Food and Drug Administration
16.
Theranostics ; 11(15): 7379-7390, 2021.
Article in English | MEDLINE | ID: covidwho-1266907

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel strain of highly contagious coronaviruses that infects humans. Prolonged fever, particularly that above 39.5 °C, is associated with SARS-CoV-2 infection. However, little is known about the pathological effects of fever caused by SARS-CoV-2. Methods: Primary bovine alveolar macrophages (PBAMs), RAW264.7 mouse macrophages, and THP-1 human cells were transfected with plasmids carrying the genes encoding the SARS-CoV-2 spike (S) protein or receptor-binding domain (RBD). Proteins in the macrophages interacting with S-RBD at 39.5 °C or 37 °C were identified by immunoprecipitation-mass spectrometry. Glutathione S-transferase pulldown, surface plasmon resonance, and immunofluorescence were performed to evaluate the transient receptor potential vanilloid 2 (TRPV2) interaction with SARS-CoV-2-S-RBD at 39.5 °C. Using an RNA sequencing-based approach, cytokine gene expression induced by SARS-CoV-2 S transfection at 39.5 °C and 37.5 °C in primary alveolar macrophages was measured. Fluo-4 staining and enzyme-linked immunosorbent assays were used to assess the regulatory function of TRPV2 in intracellular Ca 2+ and cytokines under SARS-CoV-2-S-RBD at 39.5 °C. Additionally, cytokine release was examined after TRPV2 knockdown with shRNA oligonucleotides or inhibition using the SKF-96365 antagonist. Results: We identified an interaction between the primary alveolar macrophage receptor TRPV2 and S-RBD under febrile conditions. Febrile temperature promotes Ca2+ influx through SARS-CoV-2 infection in PBAMs, further activates the NF-κB p65 signaling pathway, and enhances the secretion of cytokines. Furthermore, knockdown or antagonist (with SKF-96365) of TRPV2 significantly decreased the release of cytokines that drive the inflammatory response. Conclusion: Collectively, our findings identified TRPV2 as a receptor of SARS-CoV-2 in conditions of febrile temperature, providing insight into critical interactions of SARS-CoV-2 with macrophages, as well as a useful resource and potential drug target for coronavirus disease 2019.


Subject(s)
COVID-19/virology , Fever/virology , Macrophages/metabolism , Macrophages/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , TRPV Cation Channels/metabolism , Virus Internalization , Animals , Calcium/metabolism , Cattle , Cells, Cultured , Cytokines/metabolism , Humans , Imidazoles/pharmacology , Kinetics , Macrophages/drug effects , Mice , NF-kappa B/metabolism , Protein Binding/drug effects , RAW 264.7 Cells , SARS-CoV-2/drug effects , Signal Transduction/drug effects , THP-1 Cells , Temperature , Virus Internalization/drug effects
17.
J Pharmacol Sci ; 147(1): 62-71, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240460

ABSTRACT

Owing to the urgent need for therapeutic interventions against the SARS-coronavirus 2 (SARS-CoV-2) pandemic, we employed an in silico approach to evaluate the SARS-CoV-2 inhibitory potential of newly synthesized imidazoles. The inhibitory potentials of the compounds against SARS-CoV-2 drug targets - main protease (Mpro), spike protein (Spro) and RNA-dependent RNA polymerase (RdRp) were investigated through molecular docking analysis. The binding free energy of the protein-ligand complexes were estimated, pharmacophore models were generated and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the compounds were determined. The compounds displayed various levels of binding affinities for the SARS-CoV-2 drug targets. Bisimidazole C2 scored highest against all the targets, with its aromatic rings including the two imidazole groups contributing to the binding. Among the phenyl-substituted 1H-imidazoles, C9 scored highest against all targets. C11 scored highest against Spro and C12 against Mpro and RdRp among the thiophene-imidazoles. The compounds interacted with HIS 41 - CYS 145 and GLU 288 - ASP 289 - GLU 290 of Mpro, ASN 501 of Spro receptor binding motif and some active site amino acids of RdRp. These novel imidazole compounds could be further developed as drug candidates against SARS-CoV-2 following lead optimization and experimental studies.


Subject(s)
Computational Biology/methods , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Molecular Docking Simulation/methods , SARS-CoV-2/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
18.
EBioMedicine ; 67: 103381, 2021 May.
Article in English | MEDLINE | ID: covidwho-1228017

ABSTRACT

BACKGROUND: An ideal animal model to study SARS-coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapies and vaccines should reproduce SARS-CoV-2 infection and recapitulate lung disease like those seen in humans. The angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, but mice are resistant to the infection because their ACE2 is incompatible with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein . METHODS: SARS-CoV-2 was passaged in BALB/c mice to obtain mouse-adapted virus strain. Complete genome deep sequencing of different generations of viruses was performed to characterize the dynamics of the adaptive mutations in SARS-CoV-2. Indirect immunofluorescence analysis and Biolayer interferometry experiments determined the binding affinity of mouse-adapted SARS-CoV-2 WBP-1 RBD to mouse ACE2 and human ACE2. Finally, we tested whether TLR7/8 agonist Resiquimod (R848) could also inhibit the replication of WBP-1 in the mouse model. FINDINGS: The mouse-adapted strain WBP-1 showed increased infectivity in BALB/c mice and led to severe interstitial pneumonia. We characterized the dynamics of the adaptive mutations in SARS-CoV-2 and demonstrated that Q493K and Q498H in RBD significantly increased its binding affinity towards mouse ACE2. Additionally, the study tentatively found that the TLR7/8 agonist Resiquimod was able to protect mice against WBP-1 challenge. Therefore, this mouse-adapted strain is a useful tool to investigate COVID-19 and develop new therapies. INTERPRETATION: We found for the first time that the Q493K and Q498H mutations in the RBD of WBP-1 enhanced its interactive affinities with mACE2. The mouse-adapted SARS-CoV-2 provides a valuable tool for the evaluation of novel antiviral and vaccine strategies. This study also tentatively verified the antiviral activity of TLR7/8 agonist Resiquimod against SARS-CoV-2 in vitro and in vivo. FUNDING: This research was funded by the National Key Research and Development Program of China (2020YFC0845600) and Emergency Science and Technology Project of Hubei Province (2020FCA046) and Robert A. Welch Foundation (C-1565).


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Imidazoles/administration & dosage , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Physiological , Animals , Binding Sites , COVID-19/metabolism , COVID-19/prevention & control , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Female , High-Throughput Nucleotide Sequencing , Humans , Imidazoles/pharmacology , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Serial Passage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication/drug effects , Whole Genome Sequencing
19.
J Comput Chem ; 42(13): 897-907, 2021 05 15.
Article in English | MEDLINE | ID: covidwho-1130516

ABSTRACT

SARS-CoV and SARS-CoV-2 belong to the subfamily Coronaviridae and infect humans, they are constituted by four structural proteins: Spike glycoprotein (S), membrane (M), envelope (E) and nucleocapsid (N), and nonstructural proteins, such as Nsp15 protein which is exclusively present on nidoviruses and is absent in other RNA viruses, making it an ideal target in the field of drug design. A virtual screening strategy to search for potential drugs was proposed, using molecular docking to explore a library of approved drugs available in the DrugBank database in order to identify possible NSP15 inhibitors to treat Covid19 disease. We found from the docking analysis that the antiviral drugs: Paritaprevir and Elbasvir, currently both approved for hepatitis C treatment which showed some of the lowest free binding energy values were considered as repositioning drugs to combat SARS-CoV-2. Furthermore, molecular dynamics simulations of the Apo and Holo-Nsp15 systems were performed in order to get insights about the stability of these protein-ligand complexes.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , COVID-19 Drug Treatment , Cyclopropanes/pharmacology , Endoribonucleases/antagonists & inhibitors , Imidazoles/pharmacology , Lactams, Macrocyclic/pharmacology , Proline/analogs & derivatives , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19/virology , Drug Repositioning , Endoribonucleases/metabolism , Humans , Molecular Docking Simulation , Molecular Targeted Therapy , Proline/pharmacology , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism
20.
Antiviral Res ; 189: 105055, 2021 05.
Article in English | MEDLINE | ID: covidwho-1126674

ABSTRACT

The current emergency of the novel coronavirus SARS-CoV2 urged the need for broad-spectrum antiviral drugs as the first line of treatment. Coronaviruses are a large family of viruses that already challenged humanity in at least two other previous outbreaks and are likely to be a constant threat for the future. In this work we developed a pipeline based on in silico docking of known drugs on SARS-CoV1/2 RNA-dependent RNA polymerase combined with in vitro antiviral assays on both SARS-CoV2 and the common cold human coronavirus HCoV-OC43. Results showed that certain drugs displayed activity for both viruses at a similar inhibitory concentration, while others were specific. In particular, the antipsychotic drug lurasidone and the antiviral drug elbasvir showed promising activity in the low micromolar range against both viruses with good selectivity index.


Subject(s)
Antiviral Agents/pharmacology , Benzofurans/pharmacology , Coronavirus OC43, Human/drug effects , Drug Repositioning , Imidazoles/pharmacology , Lurasidone Hydrochloride/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Line, Tumor , Chlorocebus aethiops , Computer Simulation , Fibroblasts , Humans , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL